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By modification of the conformal transformation used by Chang in determining uniform field electrode profiles, a large 
improvement can be achieved in the uniformity of the electric field strength distribution over the surface of the electrodes. 
When such electrodes are used in a TEA laser system, smaller electrodes can be used for the same gas discharge width. 

1. Introduction 2. The conformal transformation 

In order to obtain high output powers from trans- 
versely excited pulsed lasers it is important to have a 
very uniform energy loading of  the active gas medium. 
That is why there is a need for specially contoured 
electrodes which produce a very uniform field strength 
over a certain amount o f  surface. A number o f  authors 
have given solutions to this problem. Up to now, 
Rogowski profiles [ 1] are most commonly used, but 
have the serious disadvantage that three smooth seg- 
ments have to be joint together in an undefined and 
rough manner. The best profiles are made by using 
the analytic formulas derived by Chang [2]. For a 
realistic Chang profde, however, the width of  a TEA 
laser electrode, required to produce a square discharge, 
amounts to approximately 3.5 times the discharge 
width [3]. For some applications, however, it is des- 
irable to have a smaller electrode-to-discharge width 
ratio. This is, for instance, the case for large aperture 
CO 2 or CO lasers, where the distance of  the UV source 
from the electrode centre is an  important measure, or 
for large aperture UV lasers, where the electrode in- 
ductance contributes significantly to the total circuit 
inductance. Compacting the electrodes in the way 
Chang describes in his paper is undesirable because 
that leads to a decrease in the field strength uniformity 
at the electrode surface. That is why we looked for 
compacting in a different way. 

We start with the same conformal transformation 
as used by Chang: 

~ = w + k ( w ) s i n h  w , (1) 

where ~ = x + iy and w = u + io, with x and y being the 
space coordinates and u and o being the flux and po- 
tential functions, respectively. However, instead o f  
k being a constant, we assume k to be a function o f  
w. For every value o f  o (Iol < rr) the prof'de of  the 
corresponding equipotential surface is given by 

x = u + Re (k)coso sinhu - Im(k)sino coshu , (2) 

y = o + Re (k) sin o coshu + Im(k)coso sinhu , (3) 

where u is the running variable. 
Because the prof'de has to be s~.nmetric with re- 

spect to the y axis and because the +v and - o  equipo- 
tentials have to be mirror images with respect to the x 
axis, the real part of  k, designated by Re (k), has to 
be an even function with respect to u as well as o, 
whereas the imaginary part o f  k, designated by Im (k), 
has to be an odd function With respect to u as well as 
u. Those conditions are fulfilled when k is an even 
function of  w. 

As can be seen from relations (2) and (3), the uni- 
form field electrode (UFE) profile is not uniquely de- 
termined. For the case that k is a real constant, k 0, 
two independent variables, k 0 and o, can be chosen, 
both of  which determine the form of  the prof'de as 
well as the electric field strength distribution. To find 
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the op t imum UFE profile,  an expression is needed for 
the electric field strength: 

E -2  = Id~'/dwl 2= I I + k c o s h w  + ( d k / d w ) s i n h w l  2 . (4) 

When the electric field strength is expressed as a power 
series expansion in u, 

E = E o ( k , o ) + E 2 ( k , o ) u 2 + E 4 ( k , o ) u 4  + ... .  (5) 

the opt imum profile can be found by requiring the 
lower coefficients (except,  of  course, for the first 
one, E0)  to vanish, or, if  this is impossible, to be max- 
imum. In the case of  k being a constant ko,  the sec- 
ond coefficient has to be zero or 

-- [ f (O)f  (2) (13) - g (1)2 (0)]/.f3 (0) = O,  (6) 

where 

f ( u )  = 1 + k0coso  coshu , (7) 

g(u)  = k 0 sin v sirth u , (8) 

and where the exponent  between brackets denotes 
the number o f  differentiations with respect to u. 

From (6) the following condit ion follows: 

v = arccos ( - k 0 )  , (9) 

as already has been derived by  Chang. 
We shall now treat two specific cases of  improved 

UFE profiles. In the first case a fourth-power func- 
tion in w will be chosen for k and in the second case 
k will be an eighth-power function in w. 

(A) k is a fourth-power function in w. 
As already mentioned,  improvements of  UFE pro- 

files can be expected if k is allowed to be some even 
function o f  w. Although,  in principle, many types of  
functions can be t r ied,  the easiest way is probably to 
take some terms o f  a power series expansion of  k 
around w = 0. 

In this section we will consider the case where k 
has the following form: 

k = k 0 + l k 2 w 2  + 2-~k4 w4 . (10) 

For  the coordinates equations (2) and (3) hold where 

Re(k)  = k 0 + ½ k2(u2 - 0 2 )  + "24 k4( u4 + o4-6 t t2o2) ,  

(11) 

Im(k)  = k2uo + ~ k4(u3o - uo 3) . (12) 

Now we have four free parameters,  k0,  k2,  k 4 , and o, 
to optimize the profile. This means that it is not only 

possible to require the coefficient E2, but  also to re- 
quire the coefficients E 4 and E 6 from eq. (5) to 
vanish. So equation (6) must be satisfied together 
with the following two equations: 

_ [f(0)f(4)(0) + 3f(2)2(0) + 4g(1)(0)g(3)(0)]/f3 (0) =0 ,  

(13) 
- [f(0)f(6)(0)  + 15f(2)(0)f(4)(0) 

+ 6g(1)(0)g(5)(0) + 10g (3)2 (0)]/) '3(0) = 0 ,  (14) 

where 

f ( u )  = 1 + Re(k)  coshu cos v - Im (k)s inhu sin v 

+ Re(1)(k) sinhu coso - Im(1)(k)coshu s i n v ,  (15) 

g(u )  = Re (k) sinhu sin v + Im(k)  coshu cos v 

+ Re(1)(k) cosh u sin v + Im(1)(k) sinh u cos o, (16) 

and where the exponent  between brackets denotes 
the number  of differentiations with respect to u 
again. 

The computer  calculations show a rather capricious 
behaviour of  the coefficient E 6 as a function of  v for 
E 2 and E 4 both zero. This behaviour is shown in fig. 
1 for a k 0 value of  0.02. The dot ted  part of  the curve 
denotes negative values o f E  6. Two zero points are 
found in this case, one for v = 1.621403 and one for 
o = 3.036043, the latter one being unimportant .  

Figs. 2 and 3 show the results of  our computer  
calculations when all three coefficients E2,  E4, and 
E 6 equal zero. In order to make the use of  this type 
of  profile convenient to everyone, the opt imum 
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Fig. 1. The coefficient E 6 as a function of o for E 2 and E 4 
both zero. k is a fourth-power function of w and the k o value 
is 0.02. The dotted part in the figure denotes negative values. 
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Table 1 
k = ko + ~k2w 2 + "~k+w 4 

ko k2 k4 o 

0.001 -0A894729 E-6 0.3526636 E-6 1.574247 
0.0015 -0.1078868 E-5 0.7874861 E-6 1.575911 
0.002 -0.1880627 E-5 0.1389751 E-5 1.577540 
0.003 -0A073689 E-5 0.3083106 E-5 1.580695 
0.005 -0.1052878 E-4 0.8340576 E-5 1.586644 
0.007 -0.1928212 E-4 0.1595262 E-4 1.592177 
0.01 -0.3577091 E-4 0.3148105 E-4 1.599834 
0.015 -0.6956990 E-4 0.6741250 E-4 1.611253 
0.02 -0.1082389 E-3 0.1147659 E-3 1.621403 
0.03 -0.1912708 E-3 0.2399266 E-3 1.639043 
0.05 -0.3465792 E-3 0.5945713 E-3 1.667832 
0.07 -0.4561044 E-3 0.1066652 E-2 1.691792 
0.1 -0-5005615 E-3 0.1958405 E-2 1.723087 
0.15 -0.2169977 E-3 0.3842812 Eo2 1.769531 
0.2 0.5203643 E-3 0.6117696 E-2 1.813299 
0.3 0.3302783 E-2 0.1148132 E-1 1.900163 
0.5 0.1374477 E-I 0.2383356 E-1 2.085975 
0.7 0.3039475 E-1 0.3665473 E-1 2.297876 
1.0 0.6755833 E-1 0-5572676 E-1 2.692438 

, i i 

10 -3 10 -2 10- 1 , k o 

Fig. 2. The optimized values ofk 2 and k 4 as a function ofk o. 
k is a fourth-power function of w. 

values of  k 2, k 4, and o are given in tabular form in 
table 1 for a range ofko-values .  

(B) k is an eighth-power function in w. 
We now consider the case where k has the follow- 
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Fig. 3. The optimized value ofo as a function o fko .k  is a 
fourth-power function of w. 

ing form: 

_ 1 2 l 4 1 6 k - k o + ~ k 2 w  +~k4w +-~k6w + ~ k s w 8 .  
(17) 

For  the coordinates equations (2) and (3) hold again 
where now 

Re (k) = k 0 + ½ k2(u2 - 02)+ I k4(t/4 + o4 - 6 u 2 o  2) 

+ ~-6 k6(u 6 - o6 _ 15u4o2 + 15u2o 4) 
(18) 

+ ~ k8(u8 + 08 - 28u6u 2 - 28U206 + 70u4o4),  

Im (k) = k2uo + ~ k4(u3o- u o 3) 

+ ~k6(3uSo  - 10u3o3 + 3uo 5) 

+ s-~k8(u7v - 7u5o 3 + 7u3o 5 - uo7). (19) 

Six parameters,  k0,  k2,  k4,  k6,  k8,  and o, are free to 
optimize the profile.  This means that it is now possible 
to require all coefficients,  E2,  E4,  E6,  E8,  and E l0  
from eq. (5) to vanish. So equations (6), (13) and 
(14) must be satisfied together with the following 
two equations: 

- -  [f(O)f(8)(O) + 28#2) (0 )#6) (0 )  + 35 I -(4)2 ((3) 
(20) 

+ 8g(1)(O)g(7)(O) + 56g(3)(O)g(5)(O)]/f3(O) = O, 
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Fig. 4. The optimized values of k2, k 4, k 6, and k s as a func- 
tion o fk  o. k is an eighth-power function ofw.  
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Fig. 5. The optimized value ofv  as a function o f k o . k  is an 
eighth-power function of w. 

-- [ f ( 0 ) f ( 1 0 ) ( 0 )  + 45f(2)(O)f(8)(O)  

+ 210/~4)(0)f(6)(0) + lOgw(o)g(9)(o) 
(21)  

+ 120g(3) (0)g(7) (0)  + 126g(  5)2 (0)]  If3 (0) = O, 

where  f(u) a n d  g(u) are given b y  eqs.  (15)  and  (16)  

t o g e t h e r  w i t h  ( 1 8 )  a n d  (19)  and  where  the  e x p o n e n t  

b e t w e e n  b racke t s  deno t e s  the  n u m b e r  o f  d i f fe rent ia -  

t ions  w i t h  respect  to  u again. 

The  resul ts  o f  ou r  c o m p u t e r  ca lcu la t ions  are 

s h o w n  in figs. 4 and  5. In o rde r  to  make  c o n v e n i e n t  

use o f  th is  t ype  o f  prof i le ,  t he  resul ts  are given again 

in t abu l a r  f o r m  in tab le  2.  

Table 2 
1 .  4 1 _ 6 1 k=ko+½k2w2 ÷ ~-~x4w +-~-6K~w + 4 ~ k a  w8 

ko k2 k4 k 6 k 8 o 

0.001 0.1344918 E-6 0.2685221 E-6 0.2176708 E-6 0.2138423 E-6 
0.0015 0.3021345 E-6 0.6037009 E-6 0.4889647 E-6 0.4806909 E-6 
0.002 0.5361709 E-6 0.1072431 E-5 0.8678578 E-6 0.8538265 E-6 
0.003 0.1201322 E-5 0.2409479 E-5 0.1946312 E-5 0.1918264 E-5 
0.005 0.3301244 E-5 0.6675282 E-5 0.5370816 E-5 0.5317301 E-5 
0.007 0.6382663 E-5 0.1305242 E-4 0.1045596 E-4 0.1041026 E-4 
0.01 0.1270177 E-4 0.2655204 E-4 0.2111624 E-4 0.2124108 E-4 
0.015 0.2711895 E-4 0.5945364 E-4 0.4663559 E-4 0.4790848 E-4 
0.02 0.4527998 E-4 0.1051987 E-3 0.8125040 E-4 0.8555060 E-4 
0.03 0.8800870 E-4 0.2342309 E-3 0.1747778 E-3 0.1945888 E-3 
0.05 0.1766461 E-3 0.6324751 E-3 0.4385705 E-3 0.5505032 E-3 
0.07 0.2569693 E-3 0.1195166 E-2 0.7754077 E-3 0.1091081 E-2 
0.1 0.3912534 E-3 0.2294400 E-2 0.1384272 E-2 0.2248266 E-2 
0.15 0.8167910 E-3 0.4673770 E-2 0.2685508 E-2 0.5098914 E-2 
0.2 0.1671438 E-2 0.7616743 E-2 0.4427084 E-2 0.9067361 E-2 
0.3 0.4999499 E-2 0.1492337 E-1 0.9510110 E-2 0.1999371 E-1 
0.5 0.1861874 E-1 0.3433195 E-1 0.2651986 E-1 0.5037162 E-1 

1.571336 
1.571606 
1.571878 
1.572426 
1.573543 
1.574696 
1.576511 
1.579810 
1.583495 
1.592047 
1.613038 
1.636992 
1.674224 
1.733464 
1.787605 
1.885634 
2.069868 
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Fig. 6. The shape of the optimized prof'fles for three different 
cases. For the curves A, B, and C the k function is respectively 
a constant, a fourth-power and an eighth-power function of 
w. The ko value is 0.02. 

3. Comparison of different prof'des; discussion 

In fig. 6 the shape is shown of the profdes for the 

three following cases: all three profiles have k 0 = 0.02; 
curve A is optimized for k being a constant, curve B 
for k being a fourth-power function in w and curve C 
for k being an eighth-power function in w. Curve C has 
a width that is 10 to 15% smaller than curve A. 

The field distribution at the surface of the prolrfles 

is very much different. Fig. 7 shows the field-strength 
distribution at the electrode surface for the corre- 
sponding profdes of fig. 6. At the vertical axis the 

normalized difference has been plotted between the 
field strength at the position x/y 0 and the electrode 
centre. A great improvement of the field-strength uni- 
formity is found. The question, however, is to which 
part the field-strength distribution in the space be- 

tween the electrodes determines the discharge width. 

Therefore the field-strength distribution is also cal- 
culated at the midplane between the electrodes, where 
o = 0. The results are plotted in fig. 7, curve A'. The 
distribution is essentially the same for all three cases. 
Experiments have to be carried out to determine the 

discharge width for the different profiles. 

0 1 2 3 

Fig. 7. The deviation of the electric field strength at the sur- 
face of the optimized electrodes from the central value as a 
function of the normalized position at the electrode surface. 
For the curves A, B, and C the k function is respectively a con. 
stant, a fourth-power function and an eighth-power function 
of w. The ko value is 0.02. The curve A' gi¢es the deviation of 
the electric-field strength at the midplane between the elec- 
trodes, also from its central value. 
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